Браузеры. Восстановление. Windows. Оптимизаторы. Антивирус

Его особенность заключается в том, что устройство выполнено в виде перчатки, здесь находится и электронная часть, и поисковая катушку. Металлоискатель был создан для поиска дома потерявшихся мелких металлических вещей, к примеру, сережек, колец и прочего. Впрочем, на основе этой схемы можно сделать и классический металлоискатель для работ на улице. Для изготовления устройства понадобится минимум материалов, львиную долю задач решает микроконтроллер Arduino.

Мощность металлоискателя небольшая, но для бытовых целей ее вполне хватит.


Материалы и инструменты для изготовления:
- микроконтроллер Arduino UNO;
- провод 28 калибра (диаметр 0.32мм);
- один переключатель;
- пьезозуммер;
- два резистора на 10К;
- один резистор на 1.2К;
- два конденсатора 100n;
- два конденсатора 22n;
- один транзистор типа BC547;
- батарея на 9В;
- строительные перчатки.

Также будет необходима фанера, клей по дереву, паяльник с припоем, многожильный провод, макетная плата и другие мелочи.

Процесс изготовления металлоискателя:

Шаг первый. Изготовление катушки
Чтобы изготовить катушку, для нее нужно вырезать основу, корпус. Автор вырезает катушку из фанеры на станке, ее диаметр составляет 6 дюймов. В итоге получается два кольца, которые впоследствии склеиваются столярным клеем. После высыхания, катушку тщательно обрабатывают наждачной бумагой, чтобы она была гладкой. После того, как основа будет изготовлена, на нее можно наматывать провод. Всего нужно сделать 30 витков провода, оставив конец длиной не менее 5-ти дюймов для подключения. Наматывать провод нужно плотно, это обеспечит качественную работу катушки. Поверх провода катушку можно обмотать изолентой или скотчем для лучшей фиксации.





Шаг второй. Сборка схемы на макете
Чтобы убедиться в том, что катушка собрана верно и вся система правильно работает, ее сперва нужно собрать на макетной плате, а уже потом спаивать. Порядок подключения не принципиален, автор начал с транзистора, потом пошли резисторы и конденсаторы. После этого были подключены «мужские и женские» разъемы на палате Arduino.












После этого можно подключать катушку. Так как провод имеет лаковое покрытие, его нужно соскоблить на концах наждачной бумагой или острым ножом. Нужно добиться хорошего контакта. Подключается катушка с помощью «мужских и женских» разъемов. После сборки всех элементов в контроллер можно загружать прошивку и проверять, как все работает на деле.

Шаг третий. Установка прошивки и проверка системы
Далее нужно загрузить в контроллер прошивку. Также возможно понадобится произвести некоторые настройки в коде, чтобы металлоискатель работал правильно. Как только код будет загружен, можно приступать к тестированию. К системе нужно подключить источник питания 9В и выключить переключатель. Если металлоискатель работает, можно приступать к спайке всех элементов на плате.


Шаг четвертый. Спайка схемы
Собирается все на куске текстолита, контакты спаиваются между собой с помощью кусочков провода. При необходимости можно сделать для устройства специальную плату методом травления. Более подробно увидеть, как происходит сборка схемы, можно увидеть на фото.





Шаг пятый. Завершающий этап сборки
Чтобы закрепить плату автор использует кусок фанеры. По размеру он должен быть таким, чтобы на него поместился контроллер Arduino и печатная плата. Края нужно обработать наждачной бумагой, чтобы сделать их гладкими. Для того чтобы приклеить элементы к фанере, можно использовать двусторонний скотч. Также подойдет клей и любые другие способы крепления.

Переработанная версия всеми известного импульсного металлоискателя - "Пирата", но на Arduino. Имеет неплохую чувствительность даже на мелкие монеты. Стабилен в не зависимости от температуры и заряда батареи. Схема максимально упрощена.

Из недостатков можно отметить отсутствие возможности определять тип металла. Определять тип могут только металлоискатели с радио излучающим принципом детектирования (сложны в устройстве и требуют точной настройки). Импульсный металлоискатель в свою очередь работает на магнитном детектировании индукционных токов в металле. Индукция при поиске не различима для черный и цветных металлов.

К слову сказать, что есть еще третий тип металлоискателей - частотный. Малоэффективная и очень простая конструкция в основе которой генератор колебаний магнитного контура, который чувствителен к изменению величины индукции катушки. Мы ее рассматривать не будем из-за низкой чувствительности. Личный эксперименты по разработке такой конструкции в лучшем случае позволяли детектировать сковородку на 20 см глубины. На монет реагировал только в "упор". Практически бесполезная штука. По тому от нее сразу отказался.


Наша схема импульсного металлоискателя имеет в себе несколько основных компонентов. Arduino генерирует импульсы, они усиливаются полевым транзистором (силовым ключом) который в свою очередь индуцирует импульсы магнитное поле в катушке. Магнитный импульс проходит до искомого металла и индуцирует в нем ток, а затем обратный сигнал магнитного поля. Этот обратный магнитный поток через небольшую задержку возвращается обратно в катушку металлодетектора и генерирует импульс. Сигнал проходит мимо пары диодов (диоды нужны что бы ограничить напряжение до 1 вольта) и уходит на вход операционного усилителя. Усиленный сигнал попадает в arduino в котором высчитывается "спадающий хвост" после отключения катушки силовым ключем. Т.е. как раз ответ от искомого металлического предмета. В зависимости от времени спада мы можем судить о величине или удаленности объекта. Индикатор показывает эту величину в 8-и уровнях индикаторов.

К слову о катушке. Она должна быть диаметром 20 см с 20-ю витками провода 0,4 - 0,8 мм. Толщина провода так же влияет на индукцию всей катушки. Сильное отклонение от толщины провода приведет к ухудшению чувствительности прибора. Катушка вставлена в водопроводную ПВХ трубу и не имеет никаких дополнительных металлический соединений.



Скетч программы содержит генератор импульсов и алгоритм обработки входящего сигнала с усилителя.

Int ss0 = 0; int ss1 = 0; int ss2 = 0; long c0 = 0; long c1 = 0; long c2 = 0; byte i = 0; int sss0 = 0; int sss1 = 0; int sss2 = 0; int s0 = 0; int s1 = 0; int s2 = 0; void setup() { DDRB = 0xFF; // port B - all out DDRD = 0xFF; // port D - all out for (i = 0; i <255; i++) // калибровка { PORTB = B11111111; delayMicroseconds(200); PORTB = 0; delayMicroseconds(20); s0 = analogRead(A0); s1 = analogRead(A0); s2 = analogRead(A0); c0 = c0 + s0; c1 = c1 + s1; c2 = c2 + s2; delay(3); } c0 = c0 / 255; c0 = c0 - 5; c1 = c1 / 255; c1 = c1 - 5; c2 = c2 / 255; c2 = c2 - 5; } void loop() { PORTB = B11111111; delayMicroseconds(200); PORTB = 0; delayMicroseconds(20); s0 = analogRead(A0); s1 = analogRead(A0); s2 = analogRead(A0); ss0 = s0 - c0; if (ss0 < 0) { sss0 = 1; } ss0 = ss0 / 16; PORTD = ss0; // посылаем на индикатор (send to LEDs) delay(1); ss1 = s1 - c1; if (ss1 < 0) { sss1 = 1; } ss1 = ss1 / 16; PORTD = ss1; // посылаем на индикатор (send to LEDs) delay(1); ss2 = s2 - c2; if (ss2 < 0) { sss2 = 1; } ss2 = ss2 / 16; PORTD = ss2; // посылаем на индикатор (send to LEDs) delay(1); if (sss0+sss1+sss2 > 2) { digitalWrite(7,HIGH); digitalWrite(6,HIGH); digitalWrite(5,HIGH); digitalWrite(4,HIGH); digitalWrite(3,HIGH); digitalWrite(2,HIGH); digitalWrite(1,HIGH); digitalWrite(0,HIGH); delay(1); sss0 = 0; sss1 = 0; sss2 = 0; } }






Был разработан на основе уже известного устройства "Терминатор Про". Основным его преимуществом является качественная дискриминация, а также малое потребление тока. Также сборка прибора обойдется не дорого, а работать он способен на любых типах грунтов.

Вот краткие характеристики устройства
По принципу работы металлоискатель относится и импульсно-балансному.
Рабочая частота составляет 8-15 кГц.

Что касается режима дискриминации, тот тут используется двух тональная озвучка. При обнаружении железа устройство подает низкий сигнал, а если попадется цветной металл, тон будет высоким.

Питается аппарат от источника в 9-12В.

Также присутствует возможность регулировки чувствительности и есть ручная отстройка от грунта.

Ну а теперь о главном, о глубине обнаружения металлоискателя. Прибор способен обнаруживать монеты диаметром 25 мм на расстоянии в 35 см по воздуху. Золотое кольцо можно поймать на расстоянии 30 см. Каску прибор обнаруживает на расстоянии порядка 1-го метра. Максимальная глубина обнаружения составляет 150 см. Что касается потребления, то без звука это порядка 35 мА.

Материалы и инструменты для сборки:

- минидрель (у автора самодельная из моторчика);
- провод для наматывания катушки;
- четырех жильный экранированный кабель;
- паяльник с припоем;
- материалы для изготовления корпуса;
- печатная плата;
- все необходимые радиодетали и их номиналы можно увидеть на фото схемы.


Процесс изготовления металлоискателя:

Шаг первый. Изготовление платы
Плата изготавливается методом травления. Далее можно сверлить отверстия, их диаметр составляет 0.8 мм. Для этих целей автор использует маленький моторчик с установленным сверлом.






Шаг второй. Сборка платы
Сборку нужно начинать с впаивания перемычек. После этого можно устанавливать панели под микросхемы и прочие впаивать прочие элементы. Очень важно иметь для качественной сборки тестер, который может замерить емкость конденсаторов. Поскольку в приборе используется два одинаковых канала усиления, то усиление по ним должно быть как можно ближе к одному значению, то есть быть одинаковым. На обоих каналах одного каскада должны быть одинаковые показания при измерении тестером.

Как выглядит уже собранная схема, можно увидеть на фото. Автор не стал устанавливать узел, определяющий степень разрядки аккумулятора.








После сборки плату нужно проверить тестером. Нужно подключить к ней питание и проверить все стратегически важные входы и выходы. Везде питание должно быть точно таким, как на схеме.

Шаг третий. Собираем катушку
Датчик DD собирается по тому же принципу, что и для всех подобных балансников. Передающая катушка обозначается буквами TX, а приемная RX. Всего нужно сделать 30 витков проводом, сложенным вдвое. Провод используется эмалированный, диаметром 0.4 мм. И приемная, и передающая катушка формируются двойными проводами, в итоге на выходе должно получиться четыре провода. Далее тестером нужно определить плечи обмоток и соединить начало одного плеча с концом другого, в итоге образуется средний вывод катушки.

Для фиксирования катушки после наматывания нужно хорошо обмотать нитками и затем пропитать лаком. После того как лак засохнет, катушки обматываются изолентой.

Впоследствии сверху делается экран из фольги, между началом и концом нужно сделать зазор порядка 1 мм, чтобы избежать короткозамкнутого витка.



Средний вывод ТХ необходимо подключить к земле платы, иначе не запустится генератор. Что касается среднего выхода RX, то он нужен для настройки по частоте. После настройки резонанса его нужно заизолировать и приемная катушка превращается в обычную, то есть без вывода. Что касается приемной катушки, то ее подключают вместо передающей и настраивают на 100-150 Гц ниже, чем предающая. Каждую катушку нужно настраивать отдельно, при настройке возле катушки не должно быть никаких металлических предметов.

Чтобы свести баланс, катушки сдвигают, как можно увидеть на фото. Баланс должен находиться в пределах 20-30 мв, но не более 100 мв.

Рабочие частоты прибора находятся в пределе от 7 кГц, до 20 кГц. Чем ниже будет частота, тем глубже будет брать прибор, но при низкой частоте дискриминация становится хуже. И наоборот, чем выше частота, тем лучше дискриминация, но при этом меньше глубина обнаружения. Золотой серединой можно считать частоту 10-14 кГц.

Для подключения катушки используется четырех жильный экранированный провод. экран подключается к корпусу, два провода идут идут на передающую катушку и два на приемную.

Когда-то, построив своими руками несколько металлоискателей различной степени работоспособности, я захотел изучить как работает схема Ардуино в этом направлении.

Есть несколько хороших примеров того, как собрать металлоискатель своими руками. Однако, для них обычно необходимо либо довольно много внешних компонентов для обработки аналогового сигнала, либо чувствительность на выходе довольно слабая.

Когда мы думаем об импульсных металлодетекторах, основной темой является то, как фиксировать небольшие изменения напряжения в сигналах, связанных с поисковой катушкой. Эти изменения обычно очень малы. Наиболее очевидный подход заключается в использовании аналоговых входов «ATmega328». Но, глядя на спецификации, есть две основные проблемы: они в основном медленные, а разрешение (в большинстве случаев) низкое.

С другой стороны, металлоискатель на микроконтроллере работает на частоте 16 МГц и имеет довольно неплохие возможности синхронизации, а именно разрешение 0,0625 мкс при использовании тактовой частоты. Таким образом, вместо того, чтобы использовать аналоговый вход для считывания, самым простым способом восприятия небольших динамических изменений напряжения является сравнение изменения падения напряжения с течением времени при фиксированном опорном напряжении.

Для этой цели ATmega328 имеет подходящие особенности внутреннего компаратора между D6 и D7. Этот компаратор способен инициировать прерывание, что позволяет точно обрабатывать события. Используя его вместе с аккуратно закодированными процедурами синхронизации, такими как millis () и micos (), а также используя внутренний таймер ATmega328 с гораздо более высоким разрешением, Arduino — отличная основа для подобного рода металлоискателя.

Таким образом, говоря об исходном коде — хорошим началом было бы программирование внутреннего компаратора для «изменения» полярности входов и использование внутреннего счетчика с максимальной скоростью, возможной для изменения периодичности изменений.

Итоговый вариант кода для Arduino:

// Defining all required pre variables etc. and setting up the registers unsigned char clockSelectBits = _BV(CS10); // no prescale, full xtal void setup() { pinMode(6,INPUT); // + of the comparator - by setting them as INPUT, they are // set to high impedance pinMode(7,INPUT); // - of the comparator - by setting them as INPUT, they are // set to high impedance cli(); // stop interrupts TCCR1A = 0; // set entire TCCR1A register to 0 TCCR1B = 0; // same for TCCR1B TCNT1 = 0; // initialize counter value to 0; TCCR1B |= clockSelectBits; // sets prescaler and starts the clock TIMSK1 = _BV(TOIE1); // sets the timer overflow interrupt enable bit sei(); //allow interrupts ACSR = (0 << ACD) | // Analog Comparator: Enabled (0 << ACBG) | // Analog Comparator Bandgap Select: AIN0 is applied to the positive input (0 << ACO) | // Analog Comparator Output: Off (1 << ACI) | // Analog Comparator Interrupt Flag: Clear Pending Interrupt (1 << ACIE) | // Analog Comparator Interrupt: Enabled (0 << ACIC) | // Analog Comparator Input Capture: Disabled (0 << ACIS1 | 0 << ACIS0 // interrupt on output toggle // (0 << ACIS1 | 1 << ACIS0 // reserved // (1 << ACIS1 | 0 << ACIS0 // interrupt on falling output edge // (1 << ACIS1 | 1 << ACIS0 // interrupt on rising input edge ; } // this routine is called every time the comparator creates an interrupt ISR(ANALOG_COMP_vect) { oldSREG=SREG; cli(); timeStamp=TCNT1; SREG = oldSREG; } // this routine is called every time there is an overflow in internal counter ISR(TIMER1_OVF_vect){ timer1_overflow_count++; } // this routine is used to reset the timer to 0 void resetTimer(void){ oldSREG = SREG; cli(); // Disable interrupts TCNT1 = 0; //initialize counter value to 0 SREG = oldSREG; // Restore status register TCCR1B |= clockSelectBits; // sets prescaler and starts the clock timer1_overflow_count=0; // resets overflow counter }

Конечно, эта идея не совсем новая. Основная часть этого кода может быть другой. Попробуйте поискать в других источниках, например TPIMD.

Шаг 1: Идея индукционного детектора на Arduino — флип-катушка


Идея состоит в том, чтобы использовать Arduino как детектор импульсной индукции, как и в TPIMD, поскольку задумка с кривой затухания, похоже, работает очень хорошо. Проблема с импульсными индукционными детекторами заключается в том, что они обычно нуждаются в разном напряжении для работы. Одно напряжение для питания катушки и отдельное напряжение для обработки кривой затухания. Эти два источника напряжения всегда усложняют процесс постройки импульсных индукционных детекторов.

Рассматривая напряжение катушки в детекторе PI, полученную кривую можно разделить на две разные стадии. Первый этап — это сам импульс, питающий катушку и создающий магнитное поле (1). Второй этап — это кривая спада напряжения, начиная с пика напряжения, а затем быстро изменяясь на «безмощностное» напряжение катушки(2).

Проблема в том, что катушка меняет свою полярность после импульса. Если импульс положительный (Var 1. на прилагаемом рисунке) кривая распада отрицательна. Если импульс отрицательный, кривая затухания будет положительной (Var 2. на прилагаемом рисунке).

Чтобы решить эту основную проблему, катушку нужно «перевернуть» электронным путем после импульса. В этом случае импульс может быть положительным, и кривая затухания также останется положительной.

Для этого катушка должна быть изолирована от Vcc и GND после импульса. В этот момент существует только ток, протекающий через демпфирующий резистор. Эта изолированная система катушки и демпфирующего резистора может быть «ориентирована» на любое опорное напряжение. Это теоретически создаст комбинированную положительную кривую (см. нижнюю часть чертежа).

Эта положительная кривая может быть использована с помощью компаратора для определения момента времени, когда напряжение затухания «пересекает» опорное напряжение. В случае, если сокровища вблизи катушки, изменяется кривая затухания и точка пересечения времени изменения опорного напряжения. Это изменение может быть обнаружено.

После некоторых экспериментов я остановился на следующей схеме:

Схема состоит из модуля Arduino Nano. Этот модуль управляет двумя МОП-транзисторами, питающими катушку (на SV3) через D10. Когда импульс на конце D10 заканчивается, оба МОП-транзистора изолируют катушку от 12V и GND.

Сохраненная энергия в катушке выходит через резистор R2 (220 Ом). В то же время резистор R1 (560 Ом) соединяет первую положительную сторону катушки с GND. Это изменяет отрицательную кривую затухания на резисторе R5 (330 Ом) до положительной кривой. Диоды защищают входной вывод Arduino.

R7 является делителем напряжения около 0,04 В. В настоящее время кривая затухания на D7 становится более отрицательной, чем 0,04 на D6, прерывание срабатывает, а длительность после окончания импульса сохраняется.

В случае металла вблизи катушки кривая затухания длится дольше, а время между окончанием импульса и прерыванием увеличивается.

Шаг 2: Строим детектор (макет)






Процесс построения детектора довольно прост. Это можно сделать либо на макете (придерживаясь оригинальной схемы), либо используя пайку деталей на печатной плате.

Светодиод D13 на плате Arduino Nano используется в качестве индикатора для металла.

Использование макета — самый быстрый способ сделать работающий детектор. Нужно провести некоторую проводку, но это может быть сделано на отдельном маленьком макете. На снимках это показано в 3 этапа, так как Arduino и МОП-транзисторы скрывают некоторые из проводов. При тестировании я случайно отключил диоды, не заметив сразу. Это особо не повлияло на поведение детектора. В версии на печатной плате я их оставил.

На рисунках не показаны подключения к OLED-дисплею 0,96. Этот дисплей подключен таким образом:

Vcc — 5В (на выводе Arduino, а не на блоке питания!)
GND — GND
SCL — A5
SDA — A4

Этот OLED-дисплей необходим для первоначальной калибровки детектора. Это делается путем установки правильного напряжения на PIN6 Arduino. Это напряжение должно быть около 0,04 В. Дисплей помогает установить правильное напряжение.

Макетная версия работает очень хорошо, хотя, вероятно, не подходит использования в полевых условиях.

Шаг 3: Проект на печатной плате




Что касается пайки, мне не очень нравится двухсторонняя высокотехнологичная печатная плата, поэтому я изменил схему для односторонней.

Сделаны следующие изменения:

  1. Диоды были исключены.
  2. На контакты МОП-транзисторов добавлен резистор 10 Ом
  3. Напряжение питания делителя напряжения на D6 задается сигналом высокого уровня на D8
  4. Пин драйвера для МОП-транзисторов был изменен.

Таким образом можно создать одностороннюю печатную плату, которая может быть спаяна на универсальной печатной плате. Используя эту схему, вы получите рабочий PI-детектор с 8-10 внешними компонентами (в зависимости от того, используется ли OLED-дисплей и / или динамик).

Шаг 4: Настройка и использование детектора




Если детектор правильно построен и программа записана в Arduino, самым простым (если не единственным) способом настройки устройства является использование OLED-дисплея. Дисплей подключен к 5V, GND, A4, A5. Дисплей должен показывать «калибровку» после включения питания устройства. Через несколько секунд он должен сказать «калибровка окончена», и на дисплее должны отобразиться три цифры.

Первое число — это «контрольное значение», указанное во время калибровки. Второе значение — это последнее измеренное значение, а третье значение — среднее значение последних 32 измерений.

Эти три значения должны быть более или менее одинаковыми (в моих тестах до 1000). Среднее значение должно быть более или менее стабильным.

Чтобы начать первоначальную настройку, рядом с катушкой не должно быть металла.

Теперь делитель напряжения (подстроечный резистор) должен быть выставлен таким образом, чтобы нижние два значения были установлены на максимум, сохраняя при этом стабильное показание. Существует критическая настройка, когда среднее значение начинает давать странные показания. Поверните триммер, чтобы снова получить стабильные значения.

Может случиться, что дисплей зависает. Просто нажмите кнопку сброса и начните заново.

Для моей конфигурации (катушка: 18 оборотов\20 см) стабильное значение составляет около 630-650. После установки нажмите кнопку сброса, аппарат снова откалибрует и все три значения будут в одном диапазоне. Если металл теперь поднести к катушке, светодиод на плате Arduino (D13) должен загореться. Прилагаемый динамик издает несколько щелчков (в исходном коде есть пространство для улучшений).

Во избежание высоких ожиданий:

Детектор обнаруживает некоторые вещи, но он остается очень простым и ограниченным.

Чтобы дать представление о возможностях, я сравнил некоторые другие детекторы со своими. Результаты по-прежнему весьма впечатляют для детектора с 8 внешними элементами, но не дотягивают до профессионального оборудования.

Глядя на схему и программу, я вижу много возможностей для улучшения. Значения резисторов были подобраны исходя из опыта, время импульса 250 мс было выбрано случайным образом, параметры катушки тоже.

Файлы

Шаг 5: Подключение дисплея 16х2



Во время тестирования я понял, что библиотека для OLED-дисплея I2C потребляла слишком много ресурсов, поэтому я решил использовать 16×2-дисплей с конвертером I2C.

Я адаптировал программу для ЖК-дисплея, добавив некоторые полезные функции. В первой строке дисплея теперь отображается уровень сигнала возможной индикации. Вторая строка теперь показывает два значения. Первое указывает на отклонение текущего сигнала по сравнению с калибровочным значением. Это значение должно быть «0». Если это значение постоянно отрицательное или положительное, детектор должен быть откалиброван нажатием кнопки сброса. Положительные значения указывают на металл вблизи катушки.

Второе значение показывает фактическое значение задержки кривой затухания. Это значение обычно не так интересно, но оно необходимо для первоначальной настройки детектора.

Теперь программа позволяет отслеживать множественные длительности импульсов в последовательности (средство для экспериментов / улучшения производительности). Тем не менее, я не добился какого-нибудь прорыва, поэтому значение по умолчанию установлено на одну длительность импульса.

Начальная настройка детектора

При настройке детектора важно второе значение второй строки (первое можно игнорировать). Первоначально значение может быть «неустойчивым» (см. Рисунок). Поверните подстроечный резистор, пока значение не достигнет стабильного показания. Затем поверните его, чтобы увеличить значение до максимального стабильного значения. Нажмите кнопку сброса для повторной калибровки, и детектор готов к использованию.

У меня сложилось впечатление, что, установив максимальную стабильную величину, я потерял чувствительность к цветным металлам. Поэтому, возможно, стоит поэкспериментировать с настройками, чтобы это исправить.

Катушки

Я сделал 3 катушки для дальнейшего тестирования схемы импульсного металлоискателя:

  • 1 -> 18 витков/ 200 мм
  • 2 -> 25 витков/100 мм
  • 3 -> 48 витков/100 мм

Интересно, что все катушки работали довольно хорошо, с почти одинаковой производительностью (рублевая монета на 40-50 мм в воздухе). Это может быть весьма субъективное наблюдение.

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Датский инженер Dzl, вместе со своим сыном собрали себе металлоискатель на базе контроллера Arduino.

Схема:


Частота работы генератора на транзисторе 2n222 зависит от индуктивности поисковой катушки и в отсутствии металла равна ~160кГц (это при авторских параметрах схемы - ёмкость конденсаторов у катушки по 22н и катуша диаметром 15см в 30 витков).
При приближении металлических предметов(особенно железа), индуктивность катушки меняется, меняется и частота генератора, за которой на pin 5 следит программа на Arduino.
Начальное нажатие NULL SW (pin 12) записывает эталонную частоту(начальная калибровка в отсутствии металла вблизи катушки).
При изменении частоты, пьезоизлучатель (pin 13) издаёт «щелчки», которые тем чаще, чем ближе металл.

Скетч:
// Arduino based metal detector // (C)Dzl july 2013 // http://dzlsevilgeniuslair.blogspot.dk/ // Connect search coil oscillator (20-200kHz) to pin 5 // Connect piezo between pin 13 and GND // Connect NULL button between pin 12 anf GND // REMEMBER TO PRESS NULL BUTTON AFTER POWER UP!! #define SET(x,y) (x |=(1<10000) clf=10000; FTW=clf; } //-Click generator if(millis()>timer) { timer+=10; PCW+=FTW; if(PCW&0x8000) { digitalWrite(13,HIGH); PCW&=0x7fff; } else digitalWrite(13,LOW); } }

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: