Браузеры. Восстановление. Windows. Оптимизаторы. Антивирус

Описан простой эксперимент с подключением кнопки к AVR микроконтроллеру, разобрана не сложная программа на языке Си для обработки нажатий кнопки. Разберемся с особенностями подключения кнопки к портам МК, а также с методами считывания состояний кнопки на языке Си.

В предыдущих статьях были рассмотрены эксперименты со светодиодами, которые подключались к портам микроконтроллера, сконфигурированных на вывод (Output).

В этой статье мы подключим к микроконтроллеру кнопку, контакты которой при нажатии замыкаются, а при отжатии - размыкаются (замыкающая кнопка).

Принципиальная схема эксперимента

Для того чтобы можно было хоть как-то наблюдать и управлять чем-то с помощью кнопки мы подключим к микроконтроллеру еще два светодиода. Схемка очень простая, вот она:

Рис. 1. Принципиальная схема эксперимента с микроконтроллером ATtiny2313 и кнопкой.

Как видим, к двум портам PB0 и PB1 через ограничивающие резисторы подключены два светодиода, а к порту PD2 - кнопка и она также с ограничивающим резистором. Для подключения программатора к МК используется разъем Conn 1 (AVR-ISP), а для подключения схемы к отдельному источнику питания +5В предназначены два контакта - P1 и P2.

Рис. 2. Собранная на беспаечной макетной панели схема эксперимента с микроконтроллером и кнопкой.

Важно заметить что для безопасного использования порта с кнопкой, последовательно ей подключен резистор с сопротивлением на 1 КОм (можно подключить и на другое сопротивление 600 Ом - 2 КОм). Примите это как правило хорошего тона в работе с пинами, которое обережет порт МК от выхода из строя в случае ошибочной подачи на пин высокого уровня и при замкнутой кнопке.

Структура портов ввода-вывода в AVR микроконтроллерах

Пины микроконтроллера являются универсальными GPIO (General Purpose Input Output), к ним можно подключать как исполнительные устройства (индикаторы, силовые ключи), так и разнообразные цифровые датчики (кнопки, переключатели).

Несколько пинов в МК могут быть подключены к АЦП/ЦАП (Аналогово-Цифровой-Преобразователь и наоборот), с их помощью можно выполнять анализ и генерацию аналоговых сигналов. Обычные GPIO не умеют работать с аналоговыми сигналами, у них на входе/выходе может быть только 0 (0В) или 1 (+5В).

К каждому пину GPIO внутри микроконтроллера подключены несколько блоков и электронных компонентов, о которых полезно знать:

  • Между пином порта и каждой из шин питания (GND и VCC) подключено по диоду . Они используются для "гашения" кратковременных помех, скачков напряжения относительно пина и каждой из шин питания;
  • Также между пином и GND включен конденсатор . Точно не знаю зачем он нужен, возможно для защиты от помех, для предотвращения дребезга контактов при использовании кнопок и переключателей подключенных к пину, или еще для чего-то;
  • К каждому пину подключен электронный ключ с резистором - это подтяжка пина к напряжению источника питания (Pull-UP) . Данный электронный ключ включается программно и служит для установки по умолчанию высокого логического уровня 1 (+5В) при работе с пином в режиме ввода (Input);
  • Между пином и каждой из шин питания (GND и VCC) включены еще два электронных ключа (без резисторов), они нужны для установки на пине высокого (+5В) или низкого (0В) логического уровня при работе пина в режиме вывода (Output).

Для программного управления и конфигурирования каждого из портов применяются три специальных регистра, к примеру для порта "B":

  • DDRB - регистр (8 бит) для установки режимов работы пинов - на ввод или вывод. Осуществляется установкой соответствующих бит в регистре;
  • PORTB - регистр для управление состоянием пинов порта в режиме вывода - высокий или низкий уровень. Также используется в режиме ввода, применяется для включения подтягивающих резисторов (Pull-UP) и установки высокого уровня на входе по умолчанию;
  • PINB - регистр, который содержит логические состояния пинов в порте, используется для чтения значений портов, которые сконфигурированы в режиме ввода.

Более детально узнать об устройстве портов для конкретной модели микроконтроллера можно из его даташита, в разделе "I/O-Ports", также там могут быть приведены примеры кода на Си и Ассемблере для работы с портами.

Пин RESET в качестве порта ввода-вывода

Полезно знать что пин "RESET" микросхемы (у нас на схеме это пин под номером 1), который предназначен для сброса выполнения программы микроконтроллера (перезагрузки), также можно использовать для подключения кнопок, светодиодов и других устройств ввода-вывода, то есть он может быть превращен в обычный GPIO.

Это может быть полезно если у микросхемы не хватает пинов для вашей конструкции. Например при сборке какого-то устройства на чипе ATtiny13 (8 выводов, 2шт - питание, 5шт - порты ввода-вывода, 1шт -для RESET) у вас оказалось что не хватает одного пина для светодиода. Здесь может быть несколько вариантов решения проблемы:

  1. Перепрограммирование пина с RESET под порт ввода-вывода;
  2. Подключение светодиода к одному из соседних уже использованных пинов, применив некоторые хистросты в схемном решении и с учетом возможности его общего использования;
  3. Использование другого МК у которого больше пинов, например ATtiny2313.

Что из этих вариантов проще и дешевле по финансам/времени - судите по своему случаю.

Для превращения пина "RESET" в порт ввода-вывода придется изменить специальный фьюз - RSTDISBL (Reset Disable). Но прежде чем это сделать нужно помнить что после данной операции перепрограммировать микроконтроллер станет возможным только с применением высоковольтного программатора (на 12В), обычный USB ISP или другой программатор с питанием от 5В сделать свою работу уже не сможет.

Программа на Си

Итак, у нас есть одна кнопка и два светодиода которые подключены к микроконтроллеру, что же с ними можно сделать? - а сделаем мы вот что (алгоритм):

  1. После включения питания светодиоды будут мигать попеременно и с задержкой в 300 миллисекунд;
  2. При нажатии и удержании кнопки будет светиться только синий светодиод;
  3. После отжатия кнопки синий светодиод мигнет 3 раза с задержкой 500 миллисекунд, после чего светодиоды снова будут мигать поочередно и с задержкой 300 миллисекунд.

Пример реализации такого алгоритма на языке Си под AVR приведен ниже. Создадим новый файл для нашей программы и откроем его для редактирования:

Nano /tmp/avr-switch-test.c

Поместим следующий код в тело файла:

/* Эксперимент с кнопкой на ATtiny2313 * https://сайт */ #define F_CPU 1000000UL // Частота ядра = 1 МГц #include #include // -- Макросы для управления светодиодами -- #define LED_BLUE_ON PORTB |= (1 << PB0) // Засвечиваем синий диод #define LED_BLUE_OFF PORTB &= ~(1 << PB0) // Гасим синий диод #define LED_RED_ON PORTB |= (1 << PB1) // Засвечиваем красный диод #define LED_RED_OFF PORTB &= ~(1 << PB1) // Гасим красный диод // Основная программа void main(void) { DDRD |= (0 << PD2); // Пин 6 - на вход PORTD |= (1 << PD2); // Включаем подтягивающий (Pull-UP) резистор для пина 6 DDRB |= (1 << PB0); // Пин 12 - на вывод DDRB |= (1 << PB1); // пин 13 - на вывод // -- Бесконечный цикл -- while(1) { _delay_ms(300); // Задержка 300 мс LED_BLUE_ON; // Включаем синий диод LED_RED_OFF; // Гасим красный диод _delay_ms(300); LED_RED_ON; // Включаем красный диод LED_BLUE_OFF; // Гасим синий диод if(!(PIND & (1 << PD2))) { // Проверяем нажата ли кнопка _delay_ms(50); // Задержка 50 мс (дребезг контактов) LED_RED_OFF; LED_BLUE_ON; while(!(PIND & (1 << PD2))); // Ждем пока кнопка не будет отпущена _delay_ms(500); // Дальше мигаем синим диодом LED_BLUE_OFF; _delay_ms(500); LED_BLUE_ON; _delay_ms(500); LED_BLUE_OFF; _delay_ms(500); LED_BLUE_ON; _delay_ms(500); LED_BLUE_OFF; _delay_ms(200); } // Конец блока работы с кнопкой } // Конец блока с вечным циклом }

Первым делом мы задаем константу F_CPU , которая укажет компилятору рабочую частоту ядра микроконтроллера, это нужно чтобы некоторые подпрограммы и функции работали корректно. В нашем примере используется функция задержки по времени - "_delay_ms" из библиотеки "util/delay.h", которая просчитывает время затраченное на холостые такты, опираясь на значение в константе F_CPU.

Посмотреть код библиотеки "delay" для организации задержки по времени и в котором используется константа F_CPU, можно в GNU Linux при помощи любого текстового редактора, к примеру можно выполнить вот такую команду:

Nano /usr/lib/avr/include/util/delay.h

Заводская установленная частота внутреннего RC генератора в микроконтроллере ATtiny2313 равняется 8000000Гц (8МГц), также по умолчанию установлен фьюз деления частоты - CKDIV8 (Clock Divide by 8), поэтому реальная рабочая частота кристалла = 8000000Гц / 8 = 1000000Гц = 1МГц.

Посмотреть какие фьюзы установлены в микроконтроллере можно при помощи avrdude или же графической оболочке к нему под названием AVR8 Burn-O-Mat .

Дальше в программе определены макросы для управления состоянием портов к которым подключены светодиоды: LED_BLUE_ON, LED_BLUE_OFF, LED_RED_ON, LED_RED_OFF. Вызвав подобный макрос в любом месте программы мы очень просто можем зажечь или погасить каждый из светодиодов, не придется повторять его код, что в свою очередь упростит программу и сделает ее более наглядной.

В основной программе "void main(void)" мы начинаем работу с конфигурации портов:

  • DDRD |= (0 << PD2) - установка разряда PD2 регистра DDRD на ввод, к нему подключена кнопка (пин 6);
  • PORTD |= (1 << PD2) - включение подтягивающего резистора для пина к которому привязан разряд PD2 регистра PORTD (пин 6);
  • DDRB |= (1 << PB0) - установка разряда PB0 в регистре DDRB на вывод, к нему подключен СИНИЙ светодиод (пин 12);
  • DDRB |= (1 << PB1) - установка разряда PB1 в регистре DDRB на вывод, к нему подключен КРАСНЫЙ светодиод (пин 13).

Дальше, используя макросы, мы гасим красный светодиод и зажигаем синий. Теперь при помощи еще одного вечного цикла но у же с условием мы выполним ожидание до того момента, пока кнопка не будет отжата: "while(!(PIND & (1 << PD2)));".

При отжатой кнопке на пине 6 появится высокий уровень (это сделает внутренний подтягивающий резистор, который мы включили раньше), а в разряде PD2 регистра PIND будет установлена логическая 1.

После этого выполняется трехразовое мигание (включение-выключение) синего светодиода с задержкой в 0,5 секунды и основной вечный цикл начинает работу по новому - будут поочередно зажигаться два светодиода.

Очень простая программа, но тем не менее, она является хорошим примером и почвой для дальнейших экспериментов.

Настройка Geany под ATtiny2313

В предыдущих публикациях я проводил эксперименты с микроконтроллером ATMega8, здесь же используется менее "нафаршированный" МК - ATTiny2313.

Для компиляции программы и прошивки ее в МК следует немножко перенастроить команды для сборки в интегрированной среде программирования Geany.

Идем в меню Build - Set Build Commands. В команде для компиляции (C commands) нужно изменить модель применяемого чипа: "-mmcu=attiny2313". В команде для прошивки МК нужно изменить тип чипа для avrdude: "-p t2313".

Рис. 3. Перенастройка Geany для работы с микроконтроллером ATTiny2313.

Все команды приведены для ОС GNU Linux, если у вас Windows то возможно придется прописать полные пути к бинарным файлам "avr-gcc.exe", "avr-objcopy.exe", "avrdude.exe".

Более подробно о том как настроить Geany в GNU Linux я рассматривал в одной из предыдущих статей цикла.

Компиляция и прошивка программы в МК

Компиляцию, сборку и прошивку программы можно выполнить нажав в среде Geany поочередно три кнопки: "Compile", "Build" и "Run". Также все эти операции можно выполнить из консоли, вот команды для данных действий (выполнять последовательно):

Avr-gcc -mmcu=attiny2313 -Os /tmp/avr-switch-test.c -o /tmp/avr-switch-test.o avr-objcopy -j .text -j .data -O ihex /tmp/avr-switch-test.o /tmp/avr-switch-test.hex avrdude -c usbasp -p t2313 -P usb -U flash:w:/tmp/avr-switch-test.hex

Все команды почти полностью (за исключением подстановок имен файлов) идентичны тем, которые мы исправляли в настройках Geany.

Заключение

Несмотря на простоту эксперимента я также постарался осветить некоторые очень важные технические моменты работы с портами, приведенные знания и опыт будут полезны в дальнейшем изучении и работе с микроконтроллерами ATMEL.

В этой статье рассматриваются важные драйверы и правильные схемы, необходимые для безопасного подключения внешних устройств к вводу/выводу MCU (микроконтроллер, англ. - Microcontroller Unit, MCU).

Введение

Как только у вас возникнет идея для проекта, очень заманчиво перейти прямо к подключению Arduino к схемам и устройствам, таким как светодиоды, реле и динамики. Однако делать это без правильной схемы может оказаться фатальным для вашего микроконтроллера.

Многие устройства ввода/вывода потребляют много тока (> 100 мА), которые большинство микроконтроллеров не могут обеспечить в безопасном режиме, а когда они пытаются обеспечить такое количество тока, они часто ломаются. Здесь нам на помощь приходят специальные схемы, которые называются «драйверы» (англ. - drivers). Драйверы - это схемы, которые могут принимать небольшой слабый сигнал от микроконтроллера, а затем использовать этот сигнал для управления каким-либо энергопотребляющим устройством.

Для правильной работы микроконтроллеров с внешними устройствами иногда требуются специальные схемы. Эти внешние устройства включают:

  • Цепи драйвера
  • Схемы защиты входа
  • Схемы защиты выхода
  • Цепи изоляции

Итак, давайте посмотрим на некоторые из этих схем и на то как они работают!

Простой светодиодный (LED) драйвер

Эта простая схема удобна для управления светодиодами с высоким энергопотреблением с помощью микроконтроллеров, где выход микроконтроллера подключен к «IN».

Когда микроконтроллер выводит 0, транзистор Q1 отключается, а также светодиод D1. Когда микроконтроллер выводит 1, транзистор включается, и поэтому D1 также включается. Значение R1 зависит от выходного напряжения вашего микроконтроллера, но значения между 1KΩ ~ 10KΩ часто работают хорошо. Значение R2 зависит от размера нагрузки, которую вы питаете, и эта схема подходит для питания устройств до 1А и не более.

Простой релейный драйвер

Устройствам, которые потребляют более 1 А тока и будут включаться и выключаться раз в несколько секунд, лучше подойдут реле.

Хотя реле достаточно просты (небольшой электромагнит, который привлекает металлический рычаг для замыкания схемы), они не могут управляться непосредственно микроконтроллером.

Для обычных реле требуются токи около 60 мА ~ 100 мА, что слишком много для большинства микроконтроллеров, поэтому реле требуют схему с использованием управления транзистором (как показано выше). Однако вместо резистора, который необходимо использовать для ограничения тока, требуется обратный диод защиты (D1).

Когда микроконтроллер (подключенный к «IN»), выдает 1, тогда включается транзистор Q1. Это включает реле RL1, и в результате загорается лампа (R2). Если микроконтроллер выводит 0, то транзистор Q1 отключается, что отключает реле, и поэтому лампа выключается.

Реле очень часто встречаются в схемах, требующих переключения цепей электропитания переменного тока, и доступны для переключения 230В и 13А (подходит для тостеров, чайников, компьютеров и пылесосов).


Кнопки

При подключении кнопки к микроконтроллеру могут иногда возникнуть простые проблемы. Первая (и самая раздражающая проблема) возникает в виде отскока, когда кнопка посылает много сигналов при нажатии и отпускании.

Кнопки обычно представляют собой кусок металла, который при контакте соприкасается с каким-то другим металлом, но когда кнопки вступают в контакт, они часто отскакивают (хотя они чаще всего крошечные). Этот отскок означает, что кнопка соединяется и отключается несколько раз, прежде чем зафиксироваться, а в итоге - результат, который ненадолго выглядит случайным. Поскольку микроконтроллеры очень быстрые, они могут поймать этот отскок и выполнять события нажатия кнопки несколько раз. Чтобы избавиться от отскока, можно использовать схему ниже. Схема, показанная здесь, представляет собой очень тривиальную схему, которая хорошо работает и проста в построении.

Защита входа: напряжение

Не все устройства ввода будут дружественными к вашему микроконтроллеру, а некоторые источники могут даже нанести ущерб. Если у вас есть источники входного сигнала, которые поступают из окружающей среды (например, датчик напряжения, датчик дождя, человеческий контакт) или источники входного сигнала, которые могут вывести напряжения, превышающие то, что может обрабатывать микроконтроллер (например, цепи индуктора), тогда вам потребуется включать некоторую защиту ввода напряжения. Схема, показанная ниже, использует 5V стабилитронов для ограничения входных напряжений, так что входное напряжение не может превышать 5 В и ниже 0 В. Резистор 100R используется для предотвращения слишком большого тока, когда диод Зенера захватывает входное напряжение.


Защита ввода/вывода: ток

Входы и выходы микроконтроллеров иногда могут быть защищены от слишком большого тока. Если устройство, такое как светодиод, потребляет меньше тока, чем максимальный выходной ток от микроконтроллера, тогда светодиод может быть напрямую подключен к микроконтроллеру. Тем не менее, последовательный резистор будет по-прежнему необходим, как показано ниже, а общие значения последовательных резисторов для светодиодов включают в себя 470 Ом, 1 кОм и даже 2,2 кОм. Серии резисторов также полезны для входных контактов в редких случаях, когда неисправны контакты микроконтроллеров или входное устройство испытывает всплеск выходного тока.


Преобразователи уровня

В прошлом большинство сигналов в цепи работало бы на одном и том же напряжении, и это напряжение обычно составляло 5 В. Однако с увеличением технологических возможностей современной электроники снижается напряжение на новых устройствах. Из-за этого многие схемы включают смешанные сигналы, в которых более старые части могут работать при напряжении 5 В, в то время как более новые части работают при напряжении 3,3 В.

Хотя многие радиолюбители предпочли бы использовать один уровень напряжения, правда состоит в том, что более старые 5-вольтовые части могут не работать на 3,3 В, в то время как более новые устройства 3,3 В не могут работать при более высоком напряжении 5 В. Если устройство 5V и устройство 3.3V хотят общаться, то требуется сдвиг уровня, который преобразует один сигнал напряжения в другой. Некоторые устройства с напряжением 3,3 В имеют 5 В "толерантность", что означает, что сигнал 5 В может напрямую подключаться к сигналу 3,3 В, но большинство устройств 5 В не могут переносить 3.3 В. Чтобы охватить оба варианта, приведенные ниже схемы показывают преобразование от 5 до 3,3 В и наоборот.


Изоляция: Оптоизолятор

Иногда схема, с которой должен взаимодействовать микроконтроллер, может представлять слишком много проблем, таких как электростатический разряд (ESD), широкие колебания напряжения и непредсказуемость. В таких ситуациях мы можем использовать устройство, называемое оптоизолятором, которое позволяет двум цепям общаться, не будучи физически соединенными друг с другом с помощью проводов.

Оптоизоляторы взаимодействуют с использованием света, когда одна цепь излучает свет, который затем обнаруживается другой схемой. Это означает, что оптоизоляторы не используются для аналоговой связи (например, уровни напряжения), но вместо этого для цифровой связи, где выход включен или выключен. Оптоизоляторы могут использоваться как для входов, так и для выходов на микроконтроллеры, где входы или выходы могут быть потенциально опасны для микроконтроллера. Интересно, что оптоизоляторы также могут использоваться для смещения уровня!


В предыдущих уроках были проведены способы вывода информации из микроконтроллера: подключение светодиода и ЖК индикатора. Но как, же вводить информацию в микроконтроллер? Существует множество вариантов и устройств для этого. Но пока что рассмотрим самый простой вариант, это обычная кнопка. Кнопки бывают двух видов: тактовые и фиксирующие. Тактовые кнопки работают по такому принципу: нажал – контакты замкнулись, отпустил – контакты разомкнулись. Следует учесть, что существуют тактовые кнопки, которые изначально замкнуты, а при нажатии размыкаются. Фиксирующие кнопки (их иногда называют: тумблеры, выключатели, переключатели) в отличии от тактовых фиксируют своё положение при нажатии, то есть: нажал – контакты замкнулись, еще раз нажал – контакты разомкнулись. В общем, с кнопками разобрались, теперь будем разбираться, как подключить эти кнопки к микроконтроллеру. А подключить на самом деле очень даже просто! Смотрим схему:

Возможно, вы спросите: Зачем резистор R1? А затем, что без резистора R1, когда кнопка S1 будет разомкнута, микроконтроллер на порте, к которому всё это подключено, будет видеть то логическую 1, то логический 0 тем самым будут производиться ложные срабатывания кнопки. Чтобы этого не происходило необходимо этот порт “подтягивать” сопротивлением к плюсу питания. Сопротивление резистора R1 может быть в интервале от 4,7кОм до 10кОм. С резистором получается такая картина: кнопка S1 нажата – на порте МК возникает логический 0, кнопка S1 не нажата – на порте МК возникает логическая 1 за счёт сопротивления R1. Конечно, нужно знать, что в некоторых AVR микроконтроллерах есть встроенные подтягивающие резисторы сопротивление порядка 50кОм, по умолчанию они отключены. В BASCOM-AVR эти резисторы можно включить, записав в необходимый порт логическую 1. Но я крайне не рекомендую использовать эти встроенные, гораздо надёжнее использовать внешние, как показано на схеме выше. Ну что, со схематическим решением разобрались, теперь будем разбираться программно. Для работы с кнопкой сначала нужно сконфигурировать порт микроконтроллера на вход, в BASCOM-AVR это делается вот так:
Config (порт микроконтроллера) = input
Пример:
Config PINB.3 = input

Обратите внимание, что для работы порта на вход, имя порта должно начинаться с PIN, а не с PORT как для конфигурации порта на выход!

После конфигурации порта на вход мы можем считать с него значение 1 или 0, в нашем случае 0 – кнопка нажата, 1 – кнопка не нажата. А проверить, что кнопка нажата, мы можем так:
If (порт микроконтроллера) = 0 then
(если кнопка нажата, то выполняем, действия описанные здесь)
End if
Можно и наоборот, проверить, не нажата ли кнопка:
If (порт микроконтроллера) = 1 then
(если кнопка не нажата, то выполняем, действия описанные здесь)
End if
Пример:
If PINB.3 = 0 then
PORTB.2 = 1 "если кнопка нажата, то включаем светодиод подключенный к PB.2
End if

Просто, не правда ли? Итак, теперь попробуем реализовать подключение кнопки к микроконтроллеру в “железе”. За основу возьмём микроконтроллер Attiny13 и для него сделанную немного ранее. Для того кто не делал отладочную плату, вот схема:

Алгоритм работы программы такой: кнопка S1 нажата – светодиод не горит, кнопка S1 не нажата – светодиод горит. А вот и сама программа на BASCOM-AVR:

$regfile = "attiny13.dat" $crystal = 8000000 Config Pinb.3 = Input Config Portb.2 = Output Do If Pinb.3 = 0 Then Portb.2 = 0 If Pinb.3 = 1 Then Portb.2 = 1 Loop End

Вот такая простая программа. Скомпилированная прошивка находится в архиве ниже. Фьюз биты можно не выставлять, так как в такой простой программе тактовая частота не особо важна. Для ленивых собирать в железе есть проект в нашем любимом , скачать можно в архиве ниже. Работа в схемы в симуляторе Proteus:

Скачать файлы для урока (проект в , исходник, прошивка) вы можете ниже

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК AVR 8-бит

ATtiny13

1 В блокнот
R1, R2 Резистор

4.7 кОм

2 В блокнот
R3 Резистор

150 Ом

1 В блокнот
HL1 Светодиод 1

Подключение микроконтроллера

Питание
Для работы микроконтроллеру нужна энергия - электричество. Для этого на него естественно нужно завести питалово. Напряжение питание у МК Atmel AVR разнится от 1.8 до 5 вольт, в зависимости от серии и модели. Все AVR могут работать от 5 вольт (если есть чисто низковольтные серии, то просьба уточнить в комментах, т.к. я таких не встречал). Так что будем считать что напряжение питания контроллера у нас всегда 5 вольт или около того. Плюс напряжения питания обычно обозначается как Vcc . Нулевой вывод (а также Земля, Корпус, да как только его не называют) обозначают GND . Если взять за пример комповый блок питания. То черный провод это GND (кстати, земляной провод традиционно окрашивают в черный цвет), а красный это +5, будет нашим Vcc . Если ты собираешься запитать микроконтроллер от батареек, то минус батареек примем за GND , а плюс за Vcc (главное чтобы напряжение питания с батарей было в заданных пределах для данного МК, позырь в даташите. Параметр обычно написан на первой странице в общем описании фич:

Operating Voltages
–1.8 - 5.5V (ATtiny2313V)
–2.7 - 5.5V (ATtiny2313)
Speed Grades
–ATtiny2313V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
–ATtiny2313: 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V

Обрати внимание, что есть особые низковольтные серии (например 2313V низковльтная) у которых нижня граница напряжения питания сильно меньше. Также стоит обратить внимание на следующий пункт, про частоты. Тут показана зависимость максимальной частоты от напряжения питания. Видно, что на низком напряжении предельные частоты ниже. А низковольтные серии раза в два медленней своих высоковольтных коллег. Впрочем, разгону все процессоры покорны;)))))

Для работы контроллерам серии AVR достаточно только питания. На все входы Vcc надо подать наши 5 (или сколько там у тебя) вольт, а все входы GND надо посадить на землю. У микроконтроллера может быть много входов Vcc и много входов GND (особенно если он в квадратном TQFP корпусе. У которого питалово со всех сторон торчит). Много выводов сделано не для удобства монтажа, а с целью равномерной запитки кристалла со всех сторон, чтобы внутренние цепи питания не перегружались. А то представь, что подключил ты питалово только с одной стороны, а с другой стороны чипа навесил на каждую линию порта по светодиоду, да разом их зажег. Внутренняя тонкопленочная шина питания, офигев от такой токовой нагрузки, испарилась и проц взял ВНЕЗАПНО и без видимых, казалось бы, причин отбросил копыта. Так чтоПОДКЛЮЧАТЬ НАДО ВСЕ ВЫВОДЫ Vcc и GND . Соединить их соответственно и запитать.

Отдельные вопросы вызвают AGND и AVCC - это аналоговая земля и питание для Аналого-Цифрового Преобразователя. АЦП это очень точный измеритель напряжения, поэтому его желательно запитать через дополнительные фильтры, чтобы помехи, которые не редки в обычной питающей цепи, не влияли на качество измерения. С этой целью в точных схемах проводят разделение земли на цифровую и аналоговую (они соединены должны быть только в одной точке), а на AVCC подается напряжение через фильтрующий дроссель. Если ты не планируешь использовать АЦП или не собираешься делать точные измерения, то вполне допустимо на AVCC подать те же 5 вольт, что и на Vcc , а AGND посадить на ту же землю что и все.Но подключать их надо обязательно!!! ЕМНИП от AVCC питается также порт А.

Warning!!!
В чипе Mega8 похоже есть ошибка на уровне топологии чипа - Vcc и AVcc связаны между собой внутри кристалла. Между ними сопротивление около (!!!) 5Ом Для сравнения, в ATmega16 и ATmega168 между Vcc и AVcc сопротивление в десятки МЕГА ом! В даташите на этот счет никаких указаний нет до сих пор, но в одном из топиков за 2004 год на AVRFreaks сказано, что люди бодались с цифровым шумом АЦП, потом написали в поддержку Atmel мол WTF??? А те, дескать, да в чипе есть бага и Vcc и AVcc соединены внутри кристалла. В свете этой инфы, думаю что ставить дроссель на AVcc для Mega8 практически бесполезно. Но AVcc запитывать надо в любом случае - кто знает насколько мощная эта внутренняя связь?

Простейшая схема подключения Микроконтроллера AVR приведена ниже:

Как видишь, добавился дроссель в цепь питания AVCC , а также конденсаторы. Хорошим тоном является ставить керамический конденсатор на сотню нанофарад между Vcc и GND у каждой микросхемы (а если у микрухи много вход питания и земель, то между каждым питанием и каждой землей) как можно ближе к выводам питания - он сгладит краткие импульсные помехи в шине питания вызыванные работой цифровых схем. Конденсатор на 47мКФ в цепи питания сгладит более глубокие броски напряжения. Кондесатор междуAVcc и GND дополнительно успокоит питание на АЦП .

Вход AREF это вход опорного напряжения АЦП . Туда вообще можно подать напряжение относительно которого будет считать АЦП , но обычно используется либо внутренний источник опорного напряжения на 2.56 вольта, либо напряжение на AVCC , поэтому на AREF рекомендуется вешать конденсатор, что немного улучшит качество опорного напряжения АЦП (а от качества опоры зависит адекватность показаний на выходе АЦП ).

Схема сброса
Резистор на RESET . Вообще в AVR есть своя внутренняя схема сброса, а сигнал RESET изнутри уже подтянут резистором в 100кОм к Vcc . НО! Подтяжка это настолько дохлая, что микроконтроллер ловит сброс от каждого чиха. Например, от касания пальцем ножки RST , а то и просто от задевания пальцем за плату. Поэтому крайне рекомендуется RST подтянуть до питания резистором в 10к. Меньше не стоит, т.к. тогда есть вероятность, что внутрисхемный программатор не сможет эту подтяжку пересилить и прошить МК внутри схемы не удасться. 10к в самый раз.

Есть еще вот такая схема сброса:

Она замечательна чем - при включении схемы конденсатор разряжен и напряжение на RST близко к нулю - микроконтроллер не стартует, т.к. ему непрерывный сброс. Но со временем, через резистор, конденсатор зарядится и напряжение на RST достигнет лог1 - МК запустится. Ну, а кнопка позволяет принудительно сделать сброс если надо.
Задержка будет примерно T=R*C для данного примера - около секунды. Зачем эта задержка? Да хотя бы для того, чтобы МК не стартовал раньше чем все девайсы платы запитаются и выйдут на установившийся режим. В старых МК (АТ89С51 , например) без такой цепочки, обеспечивающей начальный сброс, МК мог вообще не стартануть.
В принципе, в AVR задержку старта, если нужно, можно сделать программно - потупить с пол секунды прежде чем приступать к активным действиям. Так что кондер можно выкинуть нафиг. А кнопку… как хочешь. Нужен тебе внешний RESET ? Тогда оставь. Я обычно оставляю.

Источник тактового сигнала
Тактовый генератор это сердце микроконтроллера. По каждому импульсу происходит какая нибудь операция внутри контроллера - гоняют данные по регистрам и шинам, переключаются выводы портов, щелкают таймеры. Чем быстрей тактовая частота тем шустрей МК выполняет свои действия и больше жрет энергии (на переключения логических вентилей нужна энергия, чем чаще они переключаются тем больше энергии надо).

Импульсы задаются тактовым генератором встроенным в микроконтроллер. Впрочем может быть и внешний генератор, все очень гибко конфигурируется! Скорость с которой тикает внутренний генератор зависит от настроек микроконтроллера и обвязки.


Генератор может быть:

  • Внутренним с внутренней задающей RC цепочкой.
    В таком случае никакой обвязки не требуется вообще! А выводы XTAL1 и XTAL2 можно не подключать вовсе, либо использовать их как обычные порты ввода вывода (если МК это позволяет). Обычно можно выбрать одно из 4х значений внутренней частоты. Этот режим установлен по дефолту .
  • Внутренним с внешней задающей RC цепочкой.
    Тут потребуется подключить снаружи микроконтроллера конденсатор и резистор. Позволяет менять на ходу тактовую частоту, просто подстраивая значение резистора.
  • Внутренним с внешним задающим кварцем.
    Снаружи ставится кварцевый резонатор и пара конденсаторов. Если кварц взят низкочастотный (до 1МГц) то конденсаторы не ставят.
  • Внешним.
    С какого либо другого устройства идет прямоугольный сигнал на вход МК, который и задает такты. Полезен этот режим, например, если надо чтобы у нас несколько микроконтроллеров работали в жестком синхронизме от одного генератора.

У разных схем есть разные достоинства:
В случае внутренней RC цепи мы экономим место на плате, нам не нужно дополнительных деталек, но мы не можем развить максимальную частоту и частота немного зависит от температуры, может плавать.
У внешнего кварца отличные показатели точности, но он стоит лишних 15 рублей и требует дополнительных деталей и, что самое обидное, часто съедает пару ног I/O. Также на внешнем же кварце можно добиться максимальной производительности от МК. Частота МК определяется частотой на которую заточен выбранный кварц. Внешная RC цепь позволяет тикать генератору МК быстрей чем от внутренней, стоит дешевле кварца, но имеет те же проблемы со стабильностью частоты, что и внутренняя RC цепь.

Способы тактования МК описаны в даташите в разделе System Clock and Clock Options и всецело определяются конфигурацией Fuse Bit’s . Пока же я настоятельно рекомендую НЕ ТРОГАТЬ FUSE пока ты не будешь твердо знать что ты делаешь и зачем. Т.к. выставив что нибудь не то, можно очень быстро превратить МК в кусок бесполезного кремния, вернуть к жизни который будет уже очень непросто (но возможно!)

Подключение к микроконтроллеру светодиода и кнопки
Сам по себе, без взаимодействия с внешним миром, микроконтроллер не интересен - кому интересно что он там внутри себя тикает? А вот если можно как то это отобразить или на это повлиять…

Итак, кнопка и светодиод подключаются следующим образом:


Для кнопки надо выбраную ножку I/O подключить через кнопку на землю. Сам же вывод надо сконфигурировать как вход с подтяжкой (DDRxy=0 PORTxy=1). Тогда, когда кнопка не нажата, через подтягивающий резистор, на входе будет высокий уровень напряжения, а из бит PINху будет при чтении отдавать 1. Если кнопку нажать, то вход будет положен на землю, а напряжение на нем упадет до нуля, а значит из PINxy будет читаться 0. По нулям в битах регистра PINх мы узнаем что кнопки нажаты.
Пунктиром показан дополнительный подтягивающий резистор. Несмотря на то, что внутри AVR на порт можно подключить подтяжку, она слабоватая - 100кОм. А значит ее легко придавить к земле помехой или наводкой, что вызовет ложное срабатывание. А еще эти внутренние подтягивающие резисторы очень любят гореть от наводок. У меня уже с десяток микроконтроллеров с убитыми PullUp резисторами. Все работает, но только нет подтяжки - сгорела. Вешаешь снаружи резистор и работает как ни в чем ни бывало. Поэтому, для ответственных схем я настоятельно рекомендую добавить внешнюю подтяжку на 10кОм - даже если внутреннюю накроет, внешняя послужит. В процессе обучения на это можно забить.

Светодиод подключается на порт двумя способами. По схеме Порт-земля или Порт-Питание . В первом случае для зажигания диода надо выдать в порт лог1 - высокий уровень (примерно равен Vcc). Во втором случае для зажжения диода требуется выдать в порт лог0 - низкий уровень (около нуля). Для AVR разницы вроде бы нет, а вот многие старые серии микроконтроллеров вниз тянули куда лучше чем вверх, так что схема Порт-Питание распространена чаще. Я применяю и ту и другую схему исходя из удобства разводки печатной платы. Ну, а на программном уровне разницы особой нет.
Вывод порта для работы со светодиодом надо сконфигурировать на выход (DDRxy=1) и тогда в зависимости от значения в PORTxy на ножке будет либо высокий либо низкий уровень напряжения.

Светодиод надо подключать через резистор . Дело в том, что прямое сопротивление светодиода очень мало. И если не ограничивать ток через него, то он просто напросто может сгореть нафиг. Либо, что вероятней, пожечь вывод микроконтроллера, который, к слову, может тянуть что то около 20-30мА. А для нормального свечения обычному светодиоду (всякие термоядерные ультраяркие прожектора мы не рассматриваем сейчас, эти монстры могут и ампер сожрать) надо около 3…15мА.

Так что, на вскидку, считаем:

  • Напряжение на выходе ноги МК около 5 вольт, падение напряжени на светодиоде обычно около 2.5 вольт (выше нельзя, иначе диод сожрет тока больше чем надо и подавится, испустив красивый дым)
  • Таким образом, напряжение которое должен взять на себя ограничительный резистор будет 5-2.5 = 2.5В.
  • Ток нам нужен 5мА - нефига светодиод зря кормить, нам индикация нужна, а не освещение:)
  • R=U/I= 2.5/5E-3 = 500Ом. Ближайший по ряду это 510 Ом. Вот его и возьмем. В принципе, можно ставить от 220 Ом до 680 Ом что под руку попадется - гореть будет нормально.

Если надо подключить много светодиодов, то на каждый мы вешаем по собственному резистору. Конечно, можно пожадничать и поставить на всех один резистор. Но тут будет западло - резистор то один, а диодов много! Соответственно чем больше диодов мы запалим тем меньше тока получит каждый - ток от одного резистора разделится между четырьмя. А поставить резистор поменьше нельзя - т.к. при зажигании одного диода он получит порцию тока на четверых и склеит ласты (либо пожгет порт).

Немного схемотехнических извратов или пара слов о экономии выводов

То что не удается запаять приходится программировать. (С) народная мудрость.

Очень часто бывает так, что вроде бы и памяти контроллера под задачу хватает с лихвой, и быстродействия через край, а ножек не хватает. Вот и приходится ставить избыточный и более дорогой микроконтроллер только потому, что у него банально больше выводов. Покажу парочку примеров как можно за счет усложнения программного кода сэкономить на железе.

Во главу угла такой экономии обычно ставится принцип динамического разделения назначения выводов во времени. То есть, например, вывод может работать на какую-либо шину, а когда шина не активна, то через этот же вывод можно проверить состояние кнопки, или что нибудь передать по другой шине. Быстро (десятки или даже тысячи раз в секунду) переключаясь между двумя разными назначениями можно добиться эффекта “одновременной работы”.

Главное, тут следовать двум правилам:

  • Два разных применения не должны мешать друг другу т.е. разделение во времени должно быть построено таким образом, чтобы смежная функция не искажала результат работы проверяемой функции.
  • Ни в коем случае нельзя допускать конфликта уровней напряжений.

Приведу пример:

  • У есть у нас вывод на который повешан выход с некого датчика и кнопка. Выход с датчика может быть 0, 1 в активном режиме и Hi-Z когда на датчик не приходит сигнал Enable.
  • Кнопка же дает на линию жесткий 0, путем короткого замыкания.

Как это должно работать:
Скажем, основную часть времени у нас ввод микроконтроллера настроен на вход Hi-Z и мы снимаем показания с датчика на который подан еще и сигнал Enable. Когда нам надо опросить кнопку, то мы отбираем у датчика Enable и его выходы становятся в режим Hi-Z и нам не мешают. Вывод микроконтроллера мы переводим в режим Pull-Up и проверяем нет ли на входе нуля - сигнал нажатой кнопки. Проверили? Переводим вход МК в Hi-Z вход и подаем Enable на датчик снова. И так много раз в секунду.

Тут у нас возникает два противоречия:

  • Логическое противоречие
    0 на линии может быть в двух случаях от датчика или от кнопки. Но в этом случае, пользуясь здравым смыслом и требуемым функционалом, мы логическое противоречие можем не брать во внимание.
    Просто будем знать, что нажатие кнопки искажает показания датчика, а значит когда датчик работает - мы кнопку жать не будем. А чтобы показания датчика не принять за нажатие кнопки мы, в тот момент когда ждем данные с датчика, просто не опрашиваем кнопку. От тупых действий, конечно, это не защитит. Но для упрощения примера защиту от дурака я сейчас во внимания не беру.
  • Электрическое противоречие
    Если датчик выставит 1, а мы нажмем кнопку, то очевидно, что GND с Vcc в одном проводе не уживутся и кто нибудь умрет. В данном случае умрет выход датчика, как более слабый - куда там хилому транзистору тягаться с медной кнопкой.
    Организационными методами такое противоречие не решить - на глаз нельзя определить напряжение на линии и решить можно жать кнопку или нет. Да и в каком месте сейчас программа можно тоже только догадываться. Поэтому решать будем схемотехнически.
    Добавим резистор в цепь кнопки, резистор небольшой, рассчитывается исходя из максимального тока самого слабого вывода линии.
    Если у нас, например, вывод датчика может дать не более 10мА, то резистор нужен такой, чтобы ток через него от Vcc до GND не превышал этой величины. При питании 5 вольт это будет 510Ом. Теперь, даже если на линии со стороны датчика будет лог1, высокий уровень, то нажатие на кнопку не вызовет даже искажения логического уровня т.к. резистор рассчитан с учетом максимальной нагрузки порта

Пример получился немного сумбурный, но суть думаю понятна. Я хочу чтобы ты увидел и понял не только как делается, но и зачем это делается:)

Ну и несколько примеров нескольких функций на одной ноге:
Во-первых, ISP разьем . Я уже давным давно забыл что такое тыкать микроконтроллер вначале в колодку программатора, потом в плату, потом обратно и так по многу раз, пока прогу не отладишь. У меня на плате торчат 6 выводов ISP разьема и при отладке программатор вечно воткнут в плату, а программу я перешиваю порой по нескольку раз в 10 минут. Прошил - проверил. Не работает? Подправил, перепрошил еще раз… И так до тех пор пока не заработает. Ресурс у МК на перепрошивку исчисляется тысячами раз. Но ISP разьем сжирает выводы. Целых 3 штуки - MOSI, MISO, SCK.
В принципе, на эти выводы можно еще повесить и кнопки. В таком случае никто никому мешать не будет, главное во время прошивки не жать на эти кнопки. Также можно повесить и светодиоды (правда в этом случае простейший программатор Громова может дать сбой, а вот USBasp молодцом!) тогда при прошивке они будут очень жизнерадостно мерцать:)))

На линии под ISP можно повесить и что нибудь другое, главное, чтобы при прошивке это ЧТОТО не начало ВНЕЗАПНО чудить . Например, управление стокилограммовым манипулятором висит на линии ISP и во время прошивки на него пошла куча бредовых данных - так он может свихнуться и кому нибудь бошку разнести. Думать надо, в общем. А вот с каким нибудь , который работает по шинному интерфейсу прокатит такая схема:

Переключаем выход с 0 на 1 и зажигаем то верхний то нижний диод. Если надо зажечь оба, то мы просто переводим вывод микроконтроллера в режим Hi-Z и словно нет его, а диоды будут гореть сквозным током. Либо быстро быстро переключать диоды между собой, в этом случае на глаз они будут оба гореть. Недостаток схемы очевиден - диоды нельзя погасить. Но если по задумке хотя бы один должен гореть, то почему бы и нет? UPD: Тут подумал, а ведь можно подобрать светодиоды и резисторы так, чтобы их суммарное падение напряжения было на уровне напряжения питания, а суммарные резисторы в таком случае загонят ток в такой мизер, что когда нога в Hi-Z то диоды вообще гореть не будут. По крайней мере на глаз это будет не заметно совсем. Разве что в кромешной тьме.

Следующий вариант он не дает экономию ножек, зато позволяет упростить разводку печатной платы, не таща к двум диодам еще и шину питания или земли:

А применив сходную тактику к кнопкам можно либо упростить разводку, либо по трем ножкам развести 6 кнопок.
Тут тоже все просто - одна нога дает подтяг, вторая косит под землю. Нажатие кнопки дает просадку напряжения на подтягивающей ножке. Это чует программа, поочередно опрашивающая каждую кнопку. Потом роли ножек меняются и опрашивается следующая кнопка.
В шестикнопочном режиме ситуация схожая - одна ножка дает подтяг, другая землю, а третья прикидывается ветошью Hi-Z и не отсвечивает. Но тут есть один побочный эффект. Например, опрашиваем мы кнопку “В”. Для этого у нас верхняя линия встает на вход с подтяжкой (PORTxy=1, DDRxy=0), средня дает низкий уровень на выходе (PORTxy=0, DDRxy=1), нижняя не участвует в процессе ибо стоит в Hi-Z (PORTxy=0, DDRxy=0). Если мы нажмем кнопку “В” то верхняя линия в этот момент просядет и программа поймет что нажата кнопка “В”, но если мы не будем жать “В”, а нажмем одновременно “Е” и “Б” то верхняя линия также просядет, а программа подумает что нажата “В”, хотя она там и рядом не валялась. Минусы такой схемы - возможна неправильная обработка нажатий. Так что если девайсом будут пользоваться быдло-операторы, жмущие на все подряд без разбора, то от такой схемы лучше отказаться.

Ну и, напоследок, схема показывающая как можно обьединить кнопку и светодиод:


Работает тоже исключительно в динамике. То есть все время мы отображаем состояние светодиода - то есть выдаем в порт либо 0 (диод горит) либо Hi-Z (диод не горит). А когда надо опросить кнопку, то мы временно (на считанные микросекунды) переводим вывод в режим вход с подтягом (DDRxy=0 PORTxy=1) и слушаем кнопку. Режим когда на выводе сильный высокий уровень (DDRxy=1 PORTxy=1) включать ни в коем случае нельзя, т.к. при нажатии на кнопку можно пожечь порт.
Минусы - при нажатии на кнопку зажигается светодиод как ни крути. Впрочем, это может быть не багой, а фичей:)

Вот такие пироги. А теперь представьте себе прогу в которой реализованы все эти динамические фичи + куча своего алгоритма. Выходит либо бесконечная череда опросов, либо легион всяких флагов. В таких случаях простейшая диспетчеризация или кооперативная это то что доктор прописал - каждый опрос гонишь по циклу своей задачи и не паришься. Зато юзаешь везде какую-нибудь ATTiny2313 и ехидно глядишь на тех кто в ту же задачу пихает Mega8 или что пожирней:)

Я ничего не знаю и боюсь что либо сжечь, что мне делать???
Не бояться и делать. В конце концов, микроконтроллер не такая уж дорогая вещь чтобы сокрушаться по поводу его смерти. Выкинул в помойку и достал из пакетика новый. На худой конец, если совсем уж страшно, то можно купить готовую демоплату на которой все уже спаяно и разведено как надо. Тебе останется только программировать и смотреть результат.
А потом, на примере того как сделана демоплата, попробовать сделать что то свое. Сама же демоплата представляет собой микроконтроллер + немного стартовой периферии, которой хватит на ряд несложных опытов и которая может облегчить подключение и исследование других устройств. Демоплаты есть разные, например фирменные комплексы вроде STK500 или AVR Butterfly или моя Pinboard которая была спроектированна исходя из моего опыта и на которой будет строится весь дальнейший учебный курс.

В следующих статьях будут устройства, которые должны управлять внешней нагрузкой. Под внешней нагрузкой я понимаю все, что прицеплено к ножкам микроконтроллера – светодиоды, лампочки, реле, двигатели, исполнительные устройства … ну Вы поняли. И как бы не была заезжена данная тема, но, чтобы избежать повторений в следующих статьях, я все-же рискну быть не оригинальным — Вы уж меня простите:). Я кратенько, в рекомендательной форме, покажу наиболее распространенные способы подключения нагрузки (если Вы что-то захотите добавить – буду только рад).
Сразу договоримся, что речь идет о цифровом сигнале (микроконтроллер все-таки цифровое устройство) и не будем отходить от общей логики: 1 -включено, 0 -выключено. Начнем.

Нагрузкой постоянного тока являются: светодиоды, лампы, реле, двигатели постоянного тока, сервоприводы, различные исполнительные устройства и т.д. Такая нагрузка наиболее просто (и наиболее часто) подключается к микроконтроллеру.

1.1 Подключение нагрузки через резистор.
Самый простой и, наверно, чаще всего используемый способ, если речь идет о светодиодах.

Резистор нужен для того, чтобы ограничить ток протекающий, через ножку микроконтроллера до допустимых 20мА . Его называют балластным или гасящим. Примерно рассчитать величину резистора можно зная сопротивление нагрузки Rн.

Rгасящий = (5v / 0.02A) – Rн = 250 – Rн

Как видно, даже в самом худшем случае, когда сопротивление нагрузки равно нулю достаточно 250 Ом для того, что бы ток не превысил 20мА. А значит, если неохота чего-то там считать — ставьте 300 Ом и Вы защитите порт от перегрузки. Достоинство способа очевидно – простота.

1.2 Подключение нагрузки при помощи биполярного транзистора.
Если так случилась, что Ваша нагрузка потребляет более 20мА, то, ясное дело, резистор тут не поможет. Нужно как-то увеличить (читай усилить) ток. Что применяют для усиления сигнала? Правильно. Транзистор!

Для усиления удобней применять n-p-n транзистор, включенный по схеме ОЭ . При таком способе можно подключать нагрузку с большим напряжением питания, чем питание микроконтроллера. Резистор на базе – ограничительный. Может варьироваться в широких пределах (1-10 кОм), в любом случае транзистор будет работать в режиме насыщения. Транзистор может быть любой n-p-n транзистор. Коэффициент усиления, практически не имеет значения. Выбирается транзистор по току коллектора (нужный нам ток) и напряжению коллектор-эмиттер (напряжение которым запитывается нагрузка). Еще имеет значение рассеиваемая мощность — чтоб не перегрелся.

Из распространенных и легко доступных можно заюзать BC546, BC547, BC548, BC549 с любыми буквами (100мА), да и тот-же КТ315 сойдет (это у кого со старых запасов остались).
- Даташит на биполярный транзистор BC547

1.3 Подключение нагрузки при помощи полевого транзистора.
Ну а если ток нашей нагрузки лежит в пределах десятка ампер? Биполярный транзистор применить не получиться, так как токи управления таким транзистором велики и скорей всего превысят 20мА. Выходом может служить или составной транзистор (читать ниже) или полевой транзистор (он же МОП, он же MOSFET). Полевой транзистор просто замечательная штука, так как он управляется не током, а потенциалом на затворе. Это делает возможным микроскопическим током на затворе управлять большими токами нагрузки.

Для нас подойдет любой n-канальный полевой транзистор. Выбираем, как и биполярный, по току, напряжению и рассеиваемой мощности.

При включении полевого транзистора нужно учесть ряд моментов:
— так как затвор, фактически, является конденсатором, то в моменты переключения транзистора через него текут большие токи (кратковременно). Для того чтобы ограничить эти токи в затвор ставиться ограничивающий резистор.
— транзистор управляется малыми токами и если выход микроконтроллера, к которому подключен затвор, окажется в высокоимпедансном Z-состоянии полевик начнет открываться-закрываться непредсказуемо, вылавливая помехи. Для устранения такого поведения ножку микроконтроллера нужно «прижать» к земле резистором порядка 10кОм.
У полевого транзистора на фоне всех его положительных качеств есть недостаток. Платой за управление малым током является медлительность транзистора. ШИМ, конечно, он потянет, но на превышение допустимой частоты он Вам ответит перегревом.

1.4 Подключение нагрузки при помощи составного транзистора Дарлингтона.
Альтернативой применения полевого транзистора при сильноточной нагрузке является применение составного транзистора Дарлингтона. Внешне это такой-же транзистор, как скажем, биполярный, но внутри для управления мощным выходным транзистором используется предварительная усилительная схема. Это позволяет малыми токами управлять мощной нагрузкой. Применение транзистора Дарлингтона не так интересно, как применение сборки таких транзисторов. Есть такая замечательная микросхема как ULN2003. В ее составе аж 7 транзисторов Дарлингтона, причем каждый можно нагрузить током до 500мА, причем их можно включать параллельно для увеличения тока.

Микросхема очень легко подключается к микроконтроллеру (просто ножка к ножке) имеет удобную разводку (вход напротив выхода) и не требует дополнительной обвязки. В результате такой удачной конструкции ULN2003 широко используется в радиолюбительской практике. Соответственно достать ее не составит труда.
- Даташит на сборку Дарлингтонов ULN2003

Если Вам нужно управлять устройствами переменного тока (чаще всего 220v), то тут все сложней, но не на много.

2.1 Подключение нагрузки при помощи реле.
Самым простым и, наверное, самым надежным есть подключение при помощи реле. Катушка реле, сама собой, является сильноточной нагрузкой, поэтому напрямую к микроконтроллеру ее не включишь. Реле можно подключить через транзистор полевой или биполярный или через туже ULN2003, если нужно несколько каналов.

Достоинства такого способа большой коммутируемый ток (зависит от выбранного реле), гальваническая развязка. Недостатки: ограниченная скорость/частота включения и механический износ деталей.
Что-то рекомендовать для применения не имеет смысла — реле много, выбирайте по нужным параметрам и цене.

2.2 Подключение нагрузки при помощи симистора (триака).
Если нужно управлять мощной нагрузкой переменного тока а особенно если нужно управлять мощностью выдаваемой на нагрузку (димеры), то Вам просто не обойтись без применения симистора (или триака). Симистор открывается коротким импульсом тока через управляющий электрод (причем как для отрицательной, так и для положительной полуволны напряжения). Закрывается симистор сам, в момент отсутствия напряжения на нем (при переходе напряжения через ноль). Вот тут начинаются сложности. Микроконтроллер должен контролировать момент перехода через ноль напряжения и в точно определенный момент подавать импульс для открытия симистора — это постоянная занятость контроллера. Еще одна сложность это отсутствие гальванической развязки у симистора. Приходится ее делать на отдельных элементах усложняя схему.


Хотя современные симисторы управляются довольно малым током и их можно подключить напрямую (через ограничительный резистор) к микроконтроллеру, из соображений безопасности приходится их включать через оптические развязывающие приборы. Причем это касается не только цепей управления симистором, но и цепей контроля нуля.

Довольно неоднозначный способ подключения нагрузки. Так как с одной стороны требует активного участия микроконтроллера и относительно сложного схемотехнического решения. С другой стороны позволяет очень гибко манипулировать нагрузкой. Еще один недостаток применения симисторов — большое количество цифрового шума, создаваемого при их работе — нужны цепи подавления.

Симисторы довольно широко используются, а в некоторых областях просто незаменимы, поэтому достать их не составляет каких либо проблем. Очень часто в радиолюбительстве применяют симисторы типа BT138.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: